Действующие госты на каменный уголь марки сс. Угли. Термины и определения. Марки, технологические группы и подгруппы ископаемых углей

ГОСТ Р 51591-2000

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УГЛИ БУРЫЕ, КАМЕННЫЕ И АНТРАЦИТ

Общие технические требования

ГОССТАНДАРТ РОССИИ

Москва

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 179 «Твердое минеральное топливо» (Комплексным научно-исследовательским и проектно-конструкторским институтом обогащения горючих ископаемых - ИОТТ)

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 21 апреля 2000 г. № 116-ст

3 ВВЕДЕН ВПЕРВЫЕ

ГОСТ Р 51591-2000

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УГЛИ БУРЫЕ, КАМЕННЫЕ И АНТРАЦИТ

Общие технические требования

Brown coals, hard coals and anthracites. General technical requirements

Дата введения 2001-01-01

1 Область применения

Настоящий стандарт распространяется на группу однородной продукции - бурые, каменные угли и антрацит, а также продукты их обогащения и рассортировки (далее - угольная продукция) и устанавливает показатели качества, характеризующие безопасность продукции и подлежащие обязательному включению в документацию, по которой изготовляется продукция.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8606-93 (ИСО 334-92) Топливо твердое минеральное. Определения общей серы. Метод Эшка

ГОСТ 9326-90 (ИСО 587 -91) Топливо твердое минеральное. Методы определения хлора

ГОСТ 10478-93 (ИСО 601-81 , ИСО 2590-73) Топливо твердое. Методы определения мышьяка

ГОСТ 11022-95 (ИСО 1171 -81) Топливо твердое минеральное. Методы определения зольности

ГОСТ 25543-88 Угли бурые, каменные и антрациты. Классификация по генетическим и технологическим параметрам

3 Технические требования

3.1 Классификация углей по генетическим и технологическим параметрам - по ГОСТ 25543 .

3.2 Угольную продукцию подразделяют на обогащенный уголь рассортированный и не рассортированный (далее - обогащенный уголь), необогащенный рассортированный уголь, рядовой уголь, промежуточный продукт (промпродукт), отсев и шлам.

3.3 Показатели качества, характеризующие безопасность угольной продукции, приведены в таблице . Нормы по указанным показателям устанавливают в документах на конкретную продукцию отдельных предприятий, но они не должны превышать значений, предусмотренных настоящим стандартом.

Таблица 1

Расчеты

Наименование показателя

Норма для продукции

Метод испытания

Обогащенный уголь

Необогащенный рассортированный уголь

Рядовой уголь, промпродукт, отсев, шлам

1 Зольность A d , %, не более:

ГОСТ 11022

Каменный уголь

29,00

38,00

45,00

Бурый уголь

34,00

38,00

45,00

2 Массовая доля общей серы S d t , %, не более

2,80

3,00

Ископаемый уголь - твердая горючая органическая порода, образовавшаяся преимущественно из отмерших растений в результате их биохимических, физико-химических и физических изменении. Основные компоненты: органическое вещество-носитель горючих и других технологических свойств угля, минеральные включения и влага.

Изменение органического вещества (ОВ) угля в недрах приводит к созданию соединений, обеспечивающих жизнедеятельность растительных организмов, превращает ОВ в вещества стойкие в ископаемом состоянии.

Вce многообразие состава и свойств угля обусловлено составом исходного материала и неодинаковым влиянием комплекса геолого-генетических факторов на особенности накопления и последующего преобразования исходной биомассы.

В зависимости от состава исходного вещества угли подразделяются на гумусовые, гумусово-сапропелевые и сапропелевые.

Гумусовые угли (гумолиты) образовались преимущественно из продукта превращения отмерших высших растений: целлюлозы, лигнита, хемицеллюлозы, протеинов, жиров, смол. Продукты превращения отмерших низших растений и простейших животных в анаэробных условиях являлись основой для образования сапропелевых углей ((сапропелитов). Если содержание целлюлозно-лигнинового комплекса в высших растениях достигает более 80%, то в низших растениях, например водорослях, лигнин практически отсутствует, а содержание целлюлозы не превышает 20%. Преобладающие вещества в них - протеины, жиры, воски, смолы. Наибольшее распространение имеют гумусовые yгли.

В зависимости от характера и степени преобразованности OB угли в соответствии с принятой в Российской Федерации традацией подразделяются на три группы: бурый, каменныйй и антрацит.

Бурый уголь - уголь низкой стадии метаморфизма с показателями отражения bитринита (гуминита) менее 0,6% при условии, что высшая теплота сгорания на влажное беззольное состояние угля составляет менее 24 МДж/кг. Различают мягкие и плотные разновидности бурых углей.

Мягкий бурый уголь - землистый, листоватый, реже массивный и плотный, матовый и полуматовый, палевого, бурого, коричневого цвета. Его влажность изменяется в пределах 40-60%. содержание углерода в органическом веществе 63-73%.

Плотный бурый уголь - однородный или полосчатый, штриховатый полуматовый и матовый, полублестящий и блестящий коричневого или черного с коричневым оттенком цвета. В куске уголь часто имеет характерный раковистый, занозистый иногда ровный излом. По сравнению с каменным бурый уголь обладает менее плотным сложением, содержит в органическом веществе меньшее количество углерода, но большее количество кислорода и характеризуется высоким выходом летучих веществ. Содержание влаги колеблется от 19 до 44,5%.

На воздухе бурый уголь быстро теряет свободную влагу и растрескивается. В его ОВ преобладают гуминовые вещества с кислотными свойствами и высокой гидрофильностью. При обработке щелочами выход гуминовых кислот достигает 88% в мягких и снижается до 2% - в наиболее плотных разновидностях. При сухой перегонке без доступа воздуха выделяется много летучих веществ (33-60%). Выход первичного дегтя изменяется от нескольких до 25% и более. Низшая теплота сгорания Q i r колеблется от 7 до 17 МДж/кг, высшая (Q s daf ) - сухого беззольного топлива достигает 29 МДж/кг. Цвет черты на неглазурованной фарфоровой пластинке колеблется от бурого до черного (плотные разновидности).

Каменный уголь образуется на средней стадии метаморфизма с показателем отражения витринита от 0,4 до 2,59% при условии, что высшая теплота сгорания (на влажное беззольное состояние угля) равна или выше 24 МДж/кг, а выход летучих веществ (на сухое беззольное состояние угля) равен 8% и более. По сравнению с бурым каменный уголь характеризуется большей степенью карбонизации (содержание углерода достигает 92%), как правило, отсутствием гуминовых кислот. Выход летучих веществ колеблется в пределах 8-50%. Органическое вещество угля при нагреве без доступа воздуха в большей или меньшей степени спекается. Свойство спекания - важнейшее при оценке пригодности угля для производства кокса.

Антрацит относится к углям высокой стадии метаморфизма с показателем отражения витринита более 2,59% при условии, чго выход летучих веществ (на сухое беззольное состояние угля) не менее 9%. При выходе летучих веществ менее 8% к антрацитам относят также уголь с показателем отражения витринита от 2,20 до 2,59% (классы 22-25). Антрацит - плотный уголь серовато-черного или черно-серого цвета с металловидным блеском, раковистым изломом. Характеризуется высокой плотностью (1,42-1,8 г/см), низким удельным электросопротивлением (10-3-10 Ом-м), высокой микротвердостью (300-1470 у.е.). Антрацит имеет низкий выход летучих веществ: от 1,5 до 9,0%, вследствие чего его пламя сравнительно бездымное. Он содержит мало влаги, в элементном составе наблюдается пониженное содержание кислорода и водорода.

Общие геологические запасы углей, содержащиеся в угленосных формациях всех геологических систем, составляют около 14000 млрд. т. Они сосредоточены в следующих странах (в млрд. т): Российской Федерации - 4731,9 (бывший СССР - 6800), США - 3600, КНР - 1500, Австралии - 697, Канаде - 547, ФРГ - 287, ЮАР - 206, Великобритании - 189, Польше - 174, Индии - 125.

2. Области применения

Используется в основном в энергетике и для получения кокса, в меньшей степени - для газификации и полукоксования, получения облагороженного топлива (газа и жидких продуктов) для бытовых нужд, на транспорте, в кирпичном производстве, обжиге извести и других областях.

В сравнительно небольших объемах уголь применяется для специальных технологических целей: производства термоантрацита и термографита, углеграфитовых изделий, yгледородных адсорбентов, карбидов кремния и кальция, углещелочных реагентов, горного воска.

Направление использования различных технологических марок, групп и подгрупп приведено в табл. 1.

На уголь приходится около 35% мирового потребления энергоресурсов. В 2007 г. в России около 28% добытых углей использовалось в энергетических целях, 22,8 - для производства кокса, 25,6 - в других отраслях промышленности, 23,8% - для бытовых нужд.

Бурый уголь - не только энергетическое топливо, но и ценное сырье для технологической переработки. Буроугольный кокс используется для замены мсталлургического кокса при получении ферросплавов, фосфора, карбида кальция. Большое значение имеют полученные на базе бурых углей гранулированные адсорбенты, полукокс. Разработаны процессы гидрогенизации бурых углей, новые методы их газификации и производства химических продуктов. Бурые угли технологической группы 1Б - сырье для получения горного воска, используемого в бумажной, текстильной, кожевенной, деревообрабатывающей промышленности, дорожном строительстве.

Таблица 1.

Направление использования упей различных технологических марок, групп и подгрупп

Направление использования

Марки, группы и подгруппы

1. Технологическое

1.1. Слоевое коксование

Все группы и подгруппы марок: ДГ, Г, ГЖО, ГЖ, Ж, КЖ, К, КО, КСН, КС, ОС, ТС, СС

1.2. Специальные процессы подготовки к коксованию

Все угли, используемые для слоевого коксования, а также марки Т и Д (подгруппа ДВ)

1.3. Производство генераторного газа в газогенераторах стационарного типа:

смешанного газа

Марки КС, СС, группы: ЗБ, 1ГЖО, подгруппы - ДГФ, ТСВ, 1ТВ

водяного газа

Группа 2Т, а также антрациты

1.4. Производство синтетического жидкого топлива

Марка ГЖ, группы: 1Б, 2Г, подгруппы - 2БВ, ЗБВ, ДВ, ДГВ, 1ГВ

1.5. Полукоксование

Марка ДГ, группы: 1Б,1Г,подгруппы - 2БВ, ЗБВ, ДВ

1.6. Производство углеродистого наполнителя (термоантрацита) для электродных изделий и литейного кокса

Группы 2Л, ЗА, подгруппы - 2ТФ и 1АФ

1.7. Производство карбида кальция, электрокорунда

Все антрациты, а также подгруппа 2ТФ

2. Энергетическое

2.1. Пылевидное и слоевое сжигание в стационарных котельных установках

Вес бурые угли и атрациты.а также неиспользуемые для коксования каменные угли. Для факельно-слоевого сжигания антрациты не используются

2.2. Сжигание в отражательных печах

Марка ДГ, i руппы - 1Г, 1СС, 2СС

2.3. Сжигание в подвижных теплоустановках и использование для коммунальных и бытовых нужд

Марки Д, ДГ, Г, СС, Т, А, бурые yгли, антрациты и неиспользуемые для коксования каменные угли

3. Производство строительных материалов

3.1. Известь

Марки Д, ДГ, СС, А, группы 2Б и ЗБ; неиспользуемые для коксования марки ГЖ, К и группы 2Г, 2Ж

3.2. Цемент

Марки Б, ДГ, СС, ТС, Т, Л, подгруппа ДВ и неиспользуемые для коксования марки КС, КСН, группы 27, 1ГЖО

3.3. Кирпич

Неиспользуемые для коксования угли

4. Прочие производства

4.1. Углеродные адсорбенты

Подгруппы: ДВ, 1ГВ, 1ГЖОВ, 2ГЖОВ

4.2. Активные угли

Группа ЗСС, подгруппа 2ТФ

4.3. Агломерация руд

Подгруппы: 2ТФ, 1АВ, 1АФ, 2АВ, ЗАВ

Полукоксы бурых углей применяются как наполнители пластмасс, различных композиционных материалов, в качестве сорбентов, ионнообменников, катализаторов. Из углей технологических групп 2Б и ЗБ получают термоуголь.

Более 80% каменноугольного кокса идет для выплавки чугуна. Другие продукты коксования, газ, смола используются в химической промышленности (35%), цветной металлургии (30%), сельском хозяйстве (23%), строительной индустрии, железнодорожном транспорте, дорожном строительстве (12%). Из продуктов коксования получают около 190 наименований химических веществ. Около 90% изготавливаемого волокна, 60 - пластмасс, 30 - синтетического каучука производится на основе соединений, получаемых при переработке каменного угля. Коксохимическая промышленность - основной поставщик бензола, толуола, ксилола, высококипящих ароматических, циклических, азот- и серосодержащих соединений, фенолов, непредельных соединений, нафталина, антрацена.

Каменноугольный пек применяется для получения пекового кокса, который используется как составная часть электродов в алюминиевой промышленности, а также в производстве углеродных волокон, технического углерода.

Высокая электропроводность, сравнительная устойчивость к процессам окисления, повышенная устойчивость к воздействию агрессивных сред и истиранию определяют широкий диапазон использования антрацита в различных отраслях. Он является высокосортным топливом, а также исходным сырьем для получения термоантрацита, термографита, карбонизаторов, карбюризаторов, карбидов кальция и кремния, электродов для металлургической промышленности, углеродных адсорбентов, коллоидно-графитовых препаратов.

3. Состав угля

Основные слагающие угля - это органические компоненты и минеральные включения. Органические компоненты, различаемые под микроскопом, с характерными морфологическими признаками, цветом и показателем отражения именуются микрокомпонентами (мацералами). В отличие от минералов они не имеют характерной кристаллической формы и постоянного химического состава. Химические и физические свойства микрокомпонентов изменяются в процессе углефикации.

Выделяют четыре группы микрокомпонентов: витринига, семивитринита, инертинита и липтинита.

Микрокомпоненты группы витринита характеризуются преимущественно ровной поверхностью, серым цветом различных оттенков в отраженном свете, слабо выраженным микрорельефом и способностью при определенной степени углефикации переходить в пластическое состояние. Показатель отражения колеблется от 0,4 до 4,5%. Микротвердость в зависимости от углефикации и генетических факторов находится в пределах от 200 до 350 МПа.

Микрокомпоненты группы семивитринита по физическим и химическим свойствам занимают промежуточное положение между микрокомпонентами групп витрипита и инертинита. Они характеризуются беловато-серым цветом различных оттенков в отраженном свете, отсутствием микрорельефа. Их показатель отражения всегда превышает значения показателя отражения витринита. Микротвердость колеблется в пределах от 250 до 420 МПа. В процессах коксования микрокомпоненты этой группы нс переходят в пластическое состояние, но способны размягчаться.

Микрокомпоненты группы инертинита характеризуются высоким показателем отражения, резко выраженным микрорельефом. Цвет изменяется от белого до желтого. Микротвердость колеблется от 500 до 2300 МПа. Микрокомпоненты этой группы не переходят в пластическое состояние и не спекаются.

Микрокомпоненты группы липтинита различаются между собой по морфологическим признакам. Цвет липтинита изменяется от темно-коричневого, черного до темно-серого и серого. Показатель отражения у этой группы самый низкий: от 0,21 до 1,59%. Мнкротвердость колеблется oт 80 до 250 МПа. При коксовании микрокомноненты этой группы образуют более подвижную пластическую массу по сравнению с витринитом.

Минеральные включения в углях - глинистые минералы, сульфиды железа, карбонаты, оксиды кремния и другие.

Глинистые минералы в среднем составляют примерно 60-80% общего количества минеральных веществ, ассоциирующих с углем. Чаще всего они представлены иллитом, серицитом, монт-мориллонитом, каолинитом. Реже отмечается галлуазит.

Глинистые минералы сложены из частиц размерами до 100 мкм. Встречаются в виде линз, прослоек или тонко рассеянных частиц в витрините. Нередко выполняют полости в компонентах с ботанической структурой или замещают их отдельные участки. В угольных пластах иногда содержатся прослои тонштейнов, в которых главным породообразующим минералом является каолинит.

Из сульфидов железа наиболее характерны пирит, марказит и мельниковит. Форма их нахождения в пластах различна и определяется условиями образования. Сингенетичные образования встречаются в виде отдельных зерен, псевдоморфоз по растительным остаткам, конкреций, прослойков. Эпигенетические сульфиды, как правило, выполняют трещины.

Карбонаты представлены кальцитом, сидеритом, доломитом, анкеритом. Кальцит часто образует тонкие прослойки либо заполняет трещины в угле. Сидерит встречается в виде округлых или овальных образований (оолитов) или заполняет полости растительных фрагментов.

Оксиды кремния представлены в углях кварцем, халцедоном, опалом и другими минералами.

Кварц встречается в виде небольших прослоек, округлых и yi ловатых зерен, иногда образует довольно крупные линзы. Халцедон встречается сравнительно реже, обычно совместно с кварцем. В зонах выветривания угля некоторых бассейнов отмечается гипс, заполняющий трещины, реже - в виде конкреций.

Прочие минеральные включения представляют в основном гидрооксиды железа, фосфаты, полевые шпаты, соли.

4. Использование углей в энергетике.

Для сжигания могут применяться угли всех марок и сортов. Основные показатели качества энергетических углей - рабочая и гигроскопическая влага, зольность, выход летучих веществ, содержание серы, ситовой состав, низшая теплота сгорания рабочего топлива, состав и плавкость золы. Для слоевого сжигания регламентируются также показатели механической прочности и термической стойкости углей, для пылеугольного - размолоспособности.

Требования промышленности к энергетическим углям регламентированы государственными стандартами, ограничивающими предельную влажность, зольность, размер кусков, содержание породы.

Слоевое сжигание предъявляет наиболее жесткие требования к топливу. Важнейшие характеристики - ситовой состав, спекаемость, зольность, выход летучих веществ, реакционная способность и термическая способность топлива. Содержание в углях как мелочи, так и крупных кусков - нежелательно. Для стандартных слоевых топок наиболее применимы куски топлива следующих размеров: 6-12 мм (бурые угли), 12-25 и 25-50 мм (каменные угли).

Факельно-слоевое сжигание предъявляет менее жесткие требования к ситовому составу топлива. Для топок этого типа поставляются отсевы, рядовые угли и угли размером 0-25, 0-50 мм.

Пылеугольный способ сжигания - основной в крупной энергетике и позволяет сжигать топливо с зольностью до 45% и в влажностью до 55%. Топливо при пылеугольном сжигании предварительно размалывается и подсушивается (для высоковлажных углей). Повышенные требования к стабильности cocтавa угля, составу и свойствам золы, размолоспособности топлива.

Жесткие требования по изученности состава и свойств золы предъявляются к углям с легкоплавкими золами, сжигаемым в топках с жидким шлакоудалением. Для пылевидного сжигания поставляются рядовые угли, промпродукты и отсевы всех марок, не пригодные для коксования и других специальных целей. Ограничивается величина сернистости углей. Возможности использования высокосернистых углей в основном лимитируются содержанием вредных газов и зольности, расходом топлива, высотой дымовых труб, возможностью выделения санитарно-защитных зон.

Угли для цементных печей. Требования к углям, предназначенным для цементных печей, нормируют содержание золы, влаги, выход летучих веществ, толщину пластического слоя, теплоту сгорания, кусковатость, содержание мелочи и минеральных примесей.

Угли для известковых печей. Требования к этим углям предусматривают ограничения по зольности, влаге, кусковатости, содержанию мелочи, марочному составу.

Угли для обжига кирпича. В углях для кирпичного производства нормируются зольность, влага, толщина пластического слоя, теплота сгорания, выход летучих, кусковатость, содержание мелочи и минеральных примесей.

Угли для коммунальных нужд. Требования к этим углям определяют марочный состав и группы углей, выход летучих веществ, толщину пластического слоя, теплоту сгорания, влажность, кусковатость, содержание мелочи и минеральных примесей.

5. Испытание качества углей

Все показаюли состава и свойств угля и их качественные характеристики имеют условные обозначения в виде буквенных символов и индексов.

Анализируемые состояния угля: рабочее (г), аналитическое (а), сухое (d).

Условные состояния угля: сухое бсззольное (daf), влажное беззольное (af), органической массы (о).

Все свойства и параметры, характеризующие качество углей, определяются в соответствии с нормативно-методическими документами, перечень которых приведен в приложении.

В каждом рабочем пласте макроскопически выделяются литотипы угля и определяется усредненный микрокомнонентный cocтав выделяемых литотипов и пласта в целом.

Гранулометрический состав - количественная характеристика угля по размеру кусков - нормируется для всех видов использования. Разделение угля на классы крупности производится путем его сортировки (грохочения) на ситах с отверстиями соответствующих размеров.

Механическая прочность углей изучается по двум параметрам: способность угля сохранять размеры кусков при ударе и при истирании. Она необходима при использовании углей для газификации, получении термоантрацитов, в электродном и литейном произволствах.

Термическая прочность угля характеризуется механической прочностью в кусках после термической обработки. Она исследуется в углях, предназначенных для сжигания в топках транспортных средств, полукоксования, гидрирования и получения литейных электродных тсрмоантрацигов.

Электрические свойства служат для оценки стадий метаморфизма: угли на низких стадиях являются диэлектриками, на средних - полупроводниками, на высоких (антрациты) - проводниками.

Плотность углей характеризует его пористость. В естественном состоянии извлеченный из недр уголь обычно имеет многочисленные трещины и включает поры (пустоты) различной формы и размеров. Различают действительную (d r) и кажущуюся (d a), закрытую и открытую пористость.

Элементный анализ включает в себя определение содержания в органической массе следующих основных элементов: углерода, водорода, азота, кислорода и органической серы. Поскольку углерод, водород и кислород содержатся в минеральной части углей, входят в cocтав карбонатов, оксидов, а также содержатся в гидратной воде силикатов, различают соответственно содержание этих элементов: общее (c t , H t , o t), в органической массе (c o , H o , o o) и в минеральной части углей (c m , H m , o m) .

Технический анализ объединяет определение основных показателей качества угля, предусмотренных требованиями нормативных документов для всех видов их использования. К показaтелям качества угля относятся: влажность, зольность, содержание серы, фосфора, выход летучих веществ, теплота сгорания. В случаях, когда направление использования углей конкретного месторождения определено в достаточной степени, производится сокращенный технический анализ, включающий определения только зольности углей, влажности и выхода летучих веществ.

Зольность предсчавляет собой отношение (в %) массы неорганического остатка (золы), получаемою после полною сгорания угля, к массе исследуемой пробы угля. Основные компоненты - оксиды Si, Al, Fe, Са, Mg, Na, К , подчиненное значение имеют оксиды Ti, Р, Мn . Выход и состав золы зависят от природы угля, условий его сжигания (прежде всего от скорости озоления и конечной температуры прокаливания). По составу золы угли подразделяются на кремнистые (SiO 2 40-70%), глиноземные (А 2 O 3 30-45%), железистые (Fе 2 О 3 > 20%), известковистые (СаО - 20-40%).

Влажность подразделяется на поверхностную (влага смачивания), максимальную (W max влагоемкость угля, свойственная его химической природе, петрографическому составу, степени yглефикации), воздушно-сухого угля (представлена адсорбционно связанной водой и характеризует пористость и гидрофильные свойства поверхности частиц угля) и общая (суммарная величина внешней влаги и влаги воздушно-сухого угля).

Сернистость угля. Массовая доля обшей серы (S t d) в углях колеблется в широких пределах. По этой величине угли разделяются на низкосернистые (до 1,5%), среднесернистые (1,5-2,5%). сернистые (2,5-4%) и высокосернистые (более 4%). Сера входит в состав органического вещества, минеральной части угля, иногда присутствует в виде элементарной. Выделяют следующие разновидности серы: органическую (S o), сульфидную (S s), сульфатную (S SO4).

Выход летучих веществ (V) оцениваеюя при надевании угля без доступа воздуха по разносги разложения на газо- и парообразные продукты и твердый нелетучий складок. Cocтав летучих продуктов представляет собой первичный деготь (для бурых углей) или каменноугольную смолу (для каменных углей). Они состоят из газов (СО, СО 2 , H 2 , CH 2) и летучих yглеводородов и их производных, а тaкжe воды.

Теплота сгорания угля (Q) используется для сопоставления теплотехнических свойств углей различных месторождений, марок между собой и с другими видами топлива. Определение теплоты сгорания производится замером количества тепла, выделяемого единицей массы угля при полном сгорании eгo в калориметрической бомбе в cpeде сжатого кислорода в стандартных условиях. Соответвуюшими пересчетами величины теплот сгорания получают значения выешей теплоты сгорания (Q s) с исключением тепла, полученного за счет кислотообразования, и низшей (Q i) теплоты сгорания с дополнительным исключением тепла, полученною за счет испарения воды.

Термические свойства углей характеризуются спекаемостью и коксуемостью.

Спекаемость - свойство угля при нагревании без доступа воздуха переходить в пластическое состояние с образованием связанного нелетучсго остатка. Свойство углей спекать инертный материал с образованием такого остатка называется спекающей способностью. При нагреве углей определенного петрографического состава и степени углефикации выше 300°С без доcтупа воздуха из них выделяются napoгазовые и жидкие продукты. При температуре 500-550°С масса затвердевает, образуется спекшийся твердый остаток - полукокс. При дальнейшем увеличении температуры (до 1000 С и более) в полукоксе снижается содержание кислорода, водорода, серы, возрастает содержание углерода. Полукокс переходит в кокс. Спекаемостью обладают каменные угли II-V стадий метаморфизма, определенного петрографического состава.

Коксуемость - свойство измельченного угля спекаться с последующим образованием кокса с установленной крупностью и прочностью кусков. Изучается прямыми (лабораторное, ящичное и полузаводское коксование) и косвенными методами.

Групповой анализ чаще всею используется для оценки качества бурых углей, в которых при обработке растворителями или химическими реагентами часть органической массы угля переходит в растворы и некоторые получаемые из экстрактов вещества (битумы, гуминовые кислоты) применяются в различных отраслях народного хозяства. Битумы, извлекаемые из легких бурых углей opганическими растворителями (бензолом, бензином и др.) представлены в основном восками и смолами. Минимальное содержание восксодержащего битума в бурых углях, используемых в промышленности, составляет 7%. Гуминовые кислоты угля - смесь кислых высокомолекулярных аморфных темноокрашенных органических веществ с высокой степенью окисленности и гидрофильностью, извлекаемых из угля водными щелочными растворами. Выход гуминовых кислот из бурых и окисленных каменных углей колеблется от нуля до 100% органической массы.

Микроэлементы в углях находятся как в органической, так и в минеральной массе. Они представлены соединениями цветных металлов, редких и рассеянных элементов, суммарная концентрация которых обычно не превышает 1% сухой массы угля.
Наибольшее практическое значение для извлечения имеют уран и германий. Кроме того, попутно могут извлекаться галлий, ванадий и другие.
Для определения содержания в углях «малых» элементов используются спектральный, спектрофотометрический, активационный и атомно-абсорбционный методы.

Приложения

Классификация углей по размеру кусков (ГОСТ 19242-73)

Классы

Условные обозначения

Пределы крупности кусков

нижний

верхний

Сортовые

Крупный (кулак)

Совмещённые и отсевы

Крупный с плитным

Орех с крупным

Мелкий с орехом

Семечко с мелким

Семечко со штыбом

Мелкий с семечком и штыбом

Орех с мелким, семечком и штыбом

Термобарические условия Земных недр приведшие к образованию углей тех или иных марок

Марка угля

Индекс

Стадия метаморфизма

Основные параметры

Глубина погружения , (м)

Температура , (°С)

Давление , (атм.)

Бурые (Б):

I - я группа

2-я группа

3 - я группа

Каменные:

Длиннопламенные

Коксовые

Отощённо-спекающие

Антрациты

Система стандартов безопасности труда. Пожарная безопасность. Общие требования

Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

Система стандартов безопасности труда. Процессы производственные. Общие требования безопасности

Система стандартов безопасности труда. Системы вентиляционные. Общие требования

() Топливо твердое минеральное. Определение высшей теплоты сгорания и вычисление низшей теплоты сгорания

ГОСТ 1137-64 Угли бурые, каменные, антрацит, горючие сланцы и брикеты угольные. Правила приемки по качеству

ГОСТ 1817-64 Угли бурые, каменные, антрациты, горючие сланцы и брикеты. Метод приготовления сборных проб

ГОСТ 1916-75 Угли бурые, каменные, антрацит, брикеты угольные и сланцы горючие. Методы определения массовой доли минеральных примесей (породы) и мелочи

Топливо твердое. Ситовый метод определения гранулометрического состава

( , ) Топливо твердое минеральное. Методы определения выхода летучих веществ

() Топливо твердое минеральное. Определение общей серы. Метод Эшка

ГОСТ 9326-90 (ИСО 587-81) Топливо твердое минеральное. Методы определения хлора

( , ) Топливо твердое. Методы определения мышьяка

ГОСТ 10742-71 Угли бурые, каменные, антрацит, горючие сланцы и брикеты. Методы отбора и подготовки проб для лабораторных испытаний

Угли бурые, каменные, антрацит и горючие сланцы. Ускоренные методы определения влаги

() Топливо твердое минеральное. Методы определения зольности

ГОСТ 11055-78 Угли бурые, каменные и антрацит. Радиационные методы определения зольности

ГОСТ 11223-88 Угли бурые и каменные. Метод отбора проб бурением скважин

ГОСТ 19242-73 Угли бурые, каменные и антрацит. Классификация по размеру кусков

Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ

ГОСТ 25543-88 Угли бурые, каменные и антрациты. Классификация по генетическим и технологическим параметрам

() Топливо твердое минеральное. Обозначение показателей качества и формулы пересчета результатов анализа для различных состояний топлива

() Топливо твердое минеральное. Методы определения влаги

ГОСТ 28663-90 Угли бурые (угли низкого ранга). Кодификация

ГОСТ 30313-95 Угли каменные и антрациты (угли среднего и высокого рангов). Кодификация

3 Технические требования

3.1 Для полукоксования и производства цемента, извести, кирпича предназначены угли марок Б (3Б), Д и ДГ по ГОСТ 25543 с размерами кусков по ГОСТ 19242 .

3.2 Показатели зольности, массовой доли общей влаги в рабочем состоянии топлива, выхода летучих веществ и размера кусков угли должны соответствовать нормам, указанным в таблицах - .

Таблица 1 - Показатели качества углей для цементных печей

Наименование месторождения

Вид продукции

Марка угля

Размер кусков, мм

Показатели качества

Зольность А d , %, не более

W r t , %, не более

Черемховское

Обогащенные угли

Д, ДГ

13-80

0-13

21,0

26,5

13,0

15,0

Необогащенные угли

Д, ДГ

0-300

27,0

14,0

Азейское

То же

Б (3Б)

0-300

20,0

30,0

Олонь-Шибирское

0-300

20,0

15,0

Таблица 2 - Показатели качества углей для известковых печей

Наименование месторождения

Вид продукции

Марка угля

Размер кусков, мм

Показатели качества

Зольность A d , %, не более

Массовая доля общей влаги в рабочем состоянии топлива W r t , %, не более

Черемховское

Обогащенные угли

Д, ДГ

50-200

19,0

13,5

13-80

21,0

13,0

0-13

26,5

15,0

Необогащенные угли

Д, ДГ

0-300

27,0

14,0

Азейское

То же

Б (3Б)

0-300

28,0

30,0

Олонь-Шибирское

0-300

27,0

15,0

Таблица 3 - Показатели качества углей для производства кирпича

Наименование месторождения

Вид продукции

Марка угля

Размер кусков, мм

Показатели качества

Зольность A d , %, не более

Массовая доля общей влаги в рабочем состоянии топлива W r t , %, не более

Черемховское

Обогащенные угли

Д, ДГ

13-80

21,0

13,0

Необогащенные угли

Д, ДГ

0-300

27,0

14,0

Азейское.

То же

0-300

28,0

30,0

Олонь-Шибирское

Б (3Б)

0-300

27,0

15,0

Таблица 4 - Показатели качества углей для полукоксования

Вид продукции

Марка угля

Размер кусков, мм

Показатели качества

Зольность А d , %, не более

Массовая доля общей влаги в рабочем состоянии топлива W r t , %, не более

Массовая доля общей серы S d t , %, не более

Выход летучих веществ V daf , %, не менее

Массовая доля кусков размером менее нижнего предела, %, не более

Обогащенные угли

Д, ДГ

13-80

19,0

13,0

47,5

15,0 для ЦОФ Касьяновская

7,0 для ОФ Сафроновская

3.3 Массовая доля общей серы не должна превышать в процентах:

4 ,5 - Черемховское месторождение;

С помощью технического анализа определяют в углях и горючих сланцах зольность, содержание влаги, серы и фосфора, выход летучих веществ на горючую массу, теплоту сгорания и характеристику нелетучего твердого остатка. Все анализы производят по аналитическим пробам угля и сланца, а содержание влаги в рабочем топливе – по лабораторным пробам.

Пересчёт элементарного состава, выхода летучих веществ и теплоты сгорания для углей (кроме сланцев) при переходе на другую массу производится по соотноше­ниям, согласно формулам. При пересчёте элементарного состава и теплоты сгорания сланца зольность А должна быть заменена на A+С02 для соответствующей массы сланца.

ВЛАГА

При анализе углей различают следующие виды влаги:

  • лабораторную – Wл, определяемую по лабораторным пробам для технических анализов;
  • аналитическую – Wа, определяемую по аналитическим пробам для элементар­ного анализа;
  • воздушно-сухую – Wавс, определяемую по аналитическим пробам при воздуш­но-сухом состоянии навески в условиях фактического состояния воздуха в лаборатории по относительной влажности и температуре;
  • гигроскопическую (внутреннюю) – Wги, близкую к Wa, но определяемую по аналитическим пробам, доведенным до воздушно-сухого равновесного состояния при* постоянной относительной влажности (60±2%) и температуре (20±5 °С) воздуха;
  • рабочую влагу – Wp определяемую по лабораторной пробе с учетом потери вла­ги при пересылке пробы в лабораторию.

Влага рабочего топлива подразделяется на внутреннюю влагу, равную гигроско­пической (Wги), и внешнюю влагу (Wвнешн), определяемую как разность Wвнешн = Wp-Wг,%. Внутренняя гигроскопическая влага (Wги) зависит от относительной влажности и температуры окружающего воздуха и адсорбционной способности углей. Влажность и зольность, составляющие балласт Бр = Wp+Aр топлива, в особе­нности внешняя влага, ухудшают качество углей, уменьшают сыпучесть, затрудняют классификацию и транспортирование и вызывают смерзание угля в зимнее время.

Угли с повышенным содержанием влаги непригодны к длительному хранению, так как влага способствует самонагреванию и самовозгоранию. В связи с этими техни­ческими условиями и стандартами на угли по видам потребления установлены пре­дельные (браковочные) нормы содержания влаги для отдельных марок и сортов углей.

Тощие угли, полуантрацит и антрацит – менее влажные, бурые угли – более влажные. Содержание влаги в углях и горючих сланцах определяют по ГОСТ 11014-2001. Сущность метода определения содержания влаги заключается в высушивании навески пробы топлива в сушильном шкафу при температуре 105-110 °С до постоян­ной массы и в вычислении потери массы взятой навески в процентах. Определение содержания влаги ускоренным методом производится по ГОСТ 11014-2001. Сущность уско­ренного метода определения содержания влаги заключается в высушивании навески топлива в сушильном шкафу при температуре, повышающейся в течение 5 мин от 130 до 150 °С для аналитической пробы и в течение 20 мин – для лабораторной, и в вы­числении потери массы взятой навески топлива в процентах. Расхождения между результатами двух параллельных определений содержания влаги по указанному ГОСТу не должны превышать допустимых значений.

ЗОЛЬНОСТЬ

Угли всегда содержат негорючие минеральные примеси, в состав которых входят карбонаты кальция СаСОз, магния MgC03, гипс CaS04-2H20, колчедан FeS2, редкие элементы. При сжигании угля несгоревшая часть минеральных примесей образует золу, которая в зависимости от ее состава, может быть тугоплавкой или лег­коплавкой, сыпучей или сплавленной. Минеральные примеси ухудшают качество углей, уменьшают теплоту сгорания, загружают транспорт перевозкой лишнего балласта, повышают расход угля на едини­цу вырабатываемой продукции, усложняют условия использования и ухудшают качество кокса.

Минеральные примеси не всегда являются балластом, иногда в них содержатся редкие элементы в количествах, позволяющих их промышленное использование. Кроме того, шлак может быть использован для производства цемента и других строительных материалов.

Зольность углей определяют по ГОСТ 11022-95. Сущность метода заключается в озолении навески топлива в муфеле и прокаливании зольного остатка до постоянной массы при температуре 800-825 °С для углей и 850-875 °С для горючих сланцев и определении массы зольного остатка в процентах к массе навески топлива. Зольность, полученная в результате анализа аналитической пробы, пересчитывается на зольность в абсолютно сухом топливе Ас.

Зольность рабочего топлива Ар в процентах вычисляют по формуле:

Ар =Ас(100-Wр)/100

Определение зольности ускоренным методом производится по ГОСТ 11022-95. Его сущность заключается в озолении навески угля в муфеле, нагретом до температуры 850-875±25°С, и определении массы зольного остатка в процентах к массе навески.

Расхождения между результатами определения зольности Лс по дубликатам од­ной лабораторной пробы в разных лабораториях по указанным ГОСТам не должны превышать:

для топлива с зольностью:

  • до 12%... 0,3%
  • от 12 до 25%... 0,5%
  • свыше 25%... 0,7%
  • свыше 40%... 1,0%

Техническими условиями и ГОСТами устанавливаются средние и предельные (браковочные) нормы зольности для различных марок и классов угля по отдельным шахтам, разрезам и обогатительным фабрикам.

СЕРА

Общая сера, содержащаяся в углях, состоит из колчеданной Sк, суль­фатной Sc, и органической Sо серы. Колчеданная сера встречается в углях в виде отдельных зерен и крупных кусков минералов пирита и марказита. При выветривании угля в шахтах, разрезах и на поверхности колчедан окисля­ется и образует сульфаты. Сульфатная сера содержится в углях, главным образом в виде сульфатов железа FeS04 и кальция CaS04. Содержание сульфатной серы в углях обычно не пре­вышает 0,1-0,2%. При сжигании сульфатная сера переходит в золу, а при коксовании углей – в кокс. Органическая сера входит в состав органической массы угля. Содержание общей серы и ее разновидной в топливе определяют по ГОСТ 8606-93.

Сера содержится во всех видах твердого топлива, причем содержание общей серы в углях колеблется в основном от 0,2 до 10%.

Сера – нежелательная и даже вредная часть топлива. При сжигании угля она выделяется в виде SO2, загрязняя и отравляя окружающую среду и корродируя металлические поверхности, уменьшает теплоту сгорания топлив, а при коксовании переходит, ухудшая его свойства и качество металла. Выбор путей использования углей часто зависит от содержания в них общей серы. Именно поэтому общая сера – важнейший показатель качества углей.

Содержание общей серы определяют сжиганием навески топлива со смесью окиси магния и углекислого натрия (смесь Эшка), растворением образовавшихся сульфатов, осаждением сульфат-иона в виде сернокислого бария, определением массы последнего и пересчетом его на массу серы. Содержание сульфатной серы определяют растворением сульфатов, содержащихся в топливе, в дистиллированной воде, осаждением сульфат-иона в виде сернокислого бария, определением массы последнего и пересчетом его на массу серы. Содержание колчеданной серы определяют обработкой пробы топлива разбав­ленной азотной кислотой и растворением в ней сульфатов, образовавшихся при окисле­нии колчедана азотной кислотой с последующим осаждением сульфат-иона в виде сернокислого бария, определением массы последнего и пересчетом его на массу серы. Со­держание колчеданной серы определяется по разности между содержанием серы, извлекаемой из топлива азотной кислотой, и водой.

Расхождения между результатами двух параллельных определений содержания серы в одной лаборатории не должны превышать: для угля с содержанием серы до 2% – 0,05%, свыше 2% – 0,1%. Расхождения между результатами определения содержания серы по дубликатам одной лабораторной пробы в разных лабораториях не должны превышать: для угля с содержанием серы до 2% – 0,1%, свыше 2% – 0,2%. Содержание серы ускоренным методом определяют по ГОСТ 2059-54.

Сущность этого метода заключается в сжигании невески угля в струе кислорода или воздуха при температуре 1150±50 °С, улавливании образовавшихся сернистых соединений раство­ром перекиси водорода и определении объема полученной в растворе серной кислоты титрованием ее раствором едкого кали. Расхождения между результатами двух параллельных определений содержания серы одной пробы для одной лаборатории не должны превышать 0,1%, для разных лабораторий – 0,2%.

ФОСФОР

Содержится в угле в незначительных количествах – 0,003-0,05% и яв­ляется вредной примесью, так как при коксовании переходит в кокс, а из кокса – в металл, придавая ему хрупкость. В донецких углях содержание фосфора колеблется в пределах 0,003-0,04%, в кузнецких и карагандинских – 0,01-0,05%. Фосфор определяется объемным или фотоколориметрическим методом по ГОСТ 1932-93.

Объемный метод заключается в окислении фосфора, содержащегося в пробе угля, в ортофосфорную кислоту с последующим осаждением фосфора в виде фосфорномо-либденовокислого аммония, растворении последнего в избытке титрованного раствора едкой щелочи, обратном титровании полученного раствора серной кислотой и вычис­лении процентного содержания фосфора по количеству раствора щелочи, израсходо­ванного для растворения осадка. Фотоколориметрический метод заключается в сжигании навески угля со смесью окиси магния и углекислого натрия (смесь Эшка), растворении спекшейся массы в кис­лоте, удалении кремниевой кислоты из раствора и фотоколориметрическом определе­нии фосфора в фильтрате.

Расхождения между результатами двух параллельных определений содержания фосфора не должны превышать:

  • до 0,01%... 0,001%
  • до 0,05%... 0,003%
  • до 0,1%... 0,005%
  • более 0,1%... 0,01%

Вычисление содержания фосфора производят на абсолютно сухую массу угля.

ЛЕТУЧИЕ ВЕЩЕСТВА

При нагревании углей без доступа воздуха образуются твер­дые и газообразные продукты. Выход летучих веществ является одним из основных показателей для классифи­кации углей по маркам и зависит от степени метаморфизма углей. С переходом к более метаморфизованным углям выход летучих веществ уменьшается. Так, выход летучих веществ на горючую массу Vг для бурых углей колеблется от 28 до 67%, для каменных углей – от 8 до 55% и для антрацита – от 2 до 9%. Выход летучих веществ для каменных и бурых углей определяется по ГОСТ 6382-65 по весовому методу, а для антрацита и полуантрацита Донецкого бас­сейна – по ГОСТ 7303-2001 по весовому методу, а для антрацита и полуантрацита Донецкого бассейна – по ГОСТ 7303-90 по объемному методу.

Сущность весового метода заключается в нагревании навески угля в закрытом крышкой фарфоровом тигле при температуре 850±25°С в течение 7 мин и определении потери в массе взятой навески. Выход летучих веществ вычисляется по разности между общей потерей в массе и потерей, происшедшей за счет испарения влаги и удаления углекислоты карбонатов при содержании последней в пробе более 2%. Расхождения между результатами определения выхода летучих веществ Vг не должны превышать 0,5% для углей с Vг менее 45% и 1,0% для углей с Vг>45%.

Сущность объемного метода заключается в нагревании навески антрацита и по­луантрацита при температуре 900±10°С в течение 15 мин и определении объема вы­делившегося газа в см 3 /г. Расхождения между результатами двух параллельных определений объемного вы­хода летучих веществ в см 3 /г по одной пробе не должны превышать 7% к меньшему из них.

На основании значений выхода летучих веществ и характеристики нелетучего остатка можно ориентировочно оценить спекаемость углей, а также предугадать поведение топлива в технологических процессах переработки и предложить рациональные способы сжигания.

ТЕПЛОТА СГОРАНИЯ

Теплота сгорания (Q, ккал/кг) является одним из основных показателей каче­ства углей. Стандартами и техническими условиями предусматривается средняя величина теплоты сгорания топлива на горючую массу по бомбе Q г б для угля, а для сланцев на абсолютно сухое топливо – Q с б. Теплоту сгорания определяют по ГОСТ 147-95.

Сущность метода заключается в сжигании навески топлива в калориметрической бомбе в сжатом кислороде и определении количества тепла, выделившегося при его сгорании. Теплота сгорания на горючую массу Q г б, определенная по бомбе, содержит, по­мимо теплоты, полученной от сжигания горючей части угля, теплоту, выделяющуюся при образовании и растворении в воде азотной кислоты, и скрытую теплоту парообра­зования при сгорании водорода, которая передается воде калориметра. Низшая теплота сгорания Q г н получается как разность между Q г б и теплотой, полученной в бомбе за счет кислотообразования и конденсации водяных паров, кото­рая в практических условиях сжигания угля не может быть использована.

Низшая теплота сгорания Q г н получается как разность между Q г б и теплотой, полученной в бомбе за счет кислотообразования и конденсации водяных паров, которая в практических условиях сжигания угля не может быть использована:

Q г н = Q г б – 22,5 (S r o + S r k) – aQ г б – 54Н г,
где 22,5 – теплота, выделяющаяся при образовании серной кислоты в воде на 1% серы, перешедшей при сжигании угля в бомбе в сернистую кислоту, ккал; S r o + S r k – количество горючей серы, перешедшей при сжигании угля в бомбе в сернистую кислоту (в процентах), отнесенное на горючую массу пробы угля.

Низшая теплота сгорания угля на рабочую массу Q р н, выделяемая при сгорании топлива в промышленных топках, ниже Q г н, так как в рабочем топливе содержится балласт Б р = W р + A р и, кроме того, для испарения влаги требуется затратить тепло 6W р;

Q р н для углей может быть вычислена по формуле:

Q р н = Q г н 100 – W p – A p 100 – 6W p , ккал/кг,

где Q р н – теплота сгорания низшая на рабочую массу, ккал/кг; Q г н – теплота сгорания низшая на горючую массу, ккал/кг.

Для горючих сланцев Q р н – вычисляется по формуле

Q р н = Q г н 100 – W p – W p испр – CO p 2K 100 – 6W p – 9,7CO p 2K ,

где 9,7CO p 2K – поглощение тепла при разложении содержащихся в сланцах карбонатов, ккал/кг.

УСЛОВНОЕ ТОПЛИВО

Ввиду того, что теплота сгорания углей отдельных месторож­дений, марок и сортов и других видов топлива различна, для удобства планирования потребности топлива, определения удельных норм и фактических расходов топлива, а также для возможности их сравнения введено понятие «условное топливо». За условное принято такое топливо, низшая теплота сгорания которого на рабочую массу Q р н составляет 7000 ккал/кг. Для перевода натурального топлива в условное и условного в натуральное пользуются калорийным эквивалентом, величина которого зависит от Q р н.

КАЛОРИЙНЫЙ ЭКВИВАЛЕНТ

Калорийный эквивалент Э к – это отношение низшей теплоты сгорания рабочего топлива к теплоте сгорания условного топлива, т. е.

Э к = Q р н 7000 .

Перевод натурального топлива В н в условное В у производится умножением количества натурального топлива на калорийный эквивалент: В у = В н *Э к.

Перевод условного топлива в натуральное производится делением количества условного топлива на калорийный эквивалент: В у = В н /Э к.

ТЕХНИЧЕСКИЙ ЭКВИВАЛЕНТ

Технический эквивалент применяется для сравнения различных углей и других ви­дов топлива с точки зрения их теплотехнической ценности и определения эквивалент­ных количеств при замене одного вида топлива другим. Технический эквивалент Э т – отношение полезно использованного количества тепла данного топлива к теплоте сгорания условного топлива. Полезно использованное тепло единицы массы топлива выражается произведе­нием низшей теплоты сгорания рабочего топлива Q р н на КПД установки. Таким образом, технический эквивалент, в отличие от калорийного, учитывает не только величину теплоты сгорания данного топлива, но и степень возможного тепло­технического использования, определяется по формуле:

Э т = Q р н Y к 7000 ,

где Y к – КПД данной котельной установки в долях единицы; 7000 – теплота сгорания условного топлива, ккал/кг.

Технический эквивалент для одного и того же топлива всегда меньше калорийного эквивалента. Технический эквивалент практически используется при определении удельных норм и фактического расхода топлива.

ООО фирма "КОМЭН" - крупнотоннажные поставки химреагентов
в железнодорожных цистернах и автотранспортом

Каменный уголь

Уголь - это вид ископаемого топлива, который образуется из частей древних растений под землей без доступа кислорода. Уголь, это первое ископаемое топливного вида, которое использовал человек. Это было началом промышленной революции, которая в свою очередь способствовала развитию угольной промышленности, обеспечив её более современной технологией.

В угле различают четыре его типа, в зависимости от степени преобразования и удельного количества углерода.

  • графиты ,
  • антрациты,
  • каменные угли ,
  • бурые угли (лигниты).

Добыча угля

Способы добычи угля зависят от глубины его нахождения. В случае, если глубина нахождения угольного пласта не превышает ста метров, разработка ведется открытым способом в угольных разрезах. Часты и такие случаи, когда при все большем углублении угольного карьера далее более выгодно начинать разработку угольного месторождения подземным способом. Для извлечения угля с большой глубины, используют шахты. На территории Российской Федерации самые глубокие шахты добывают уголь с уровня чуть более 1200 метров.

Маркировка угля

С целью рационального промышленного применения угля, установлена его маркировка. Угли подразделяются на марки и технологические группы; в основу такого подразделения входят параметры, которые характеризуют поведение угля в процессе термического на него воздействия. Российская классификация отличается от западной классификации. Различают следующие марки угля:

  • А - антрациты
  • Б - бурые
  • Г - газовые
  • Д - длиннопламенные
  • Ж - жирные
  • К - коксовые
  • ОС - отощённо-спекающиеся
  • Т - тощие

Кроме указанных, в некоторых бассейнах выделяются промежуточные марки:

  • газовые жирные (ГЖ)
  • коксовые жирные (КЖ)
  • коксовые вторые (K2)
  • слабоспекающиеся (СС)

По размеру получаемых при добыче кусков, каменный уголь классифицируется на:

  • П - (плита) более 100 мм
  • К - (крупный) 50 - 100 мм
  • О - (орех) 25 - 50 мм
  • М - (мелкий) 13 - 25 мм
  • С - (семечка) 6 - 13 мм
  • Ш - (штыб) 0 - 6 мм
  • Р - (рядовой) шахтный 0 - 200 мм, карьерный 0 - 300мм

Применение угля

Использовать каменный уголь можно разнообразно. Его применяют в качестве бытового, энергетического топлива, как сырье для металлургической и химической промышленности, в том числе и для извлечения из него редких и рассеянных элементов. Достаточно прибыльным является сжижение (гидрогенизация) угля с образованием жидкого топлива. Для производства одной тонны нефти расходуется две, три тонны каменного угля. Также из каменного угля получают искусственный графит.

Уголь длиннопламенный марки "Д" (ГОСТ Р 51586-2000).

Угли длиннопламенные - это угли с показателем отражения витринита от 0,4 до 0,79% с выходом летучих веществ более 28-30% при порошкообразном или слабоспекающемся нелетучем остатке. Длиннопламенные угли не спекаются и относятся к энергетическим углям.
Марка угля Класс крупности, мм Качественные характеристики (предельные) Теплота сгорания
низшая Ккал/кг
Зола,% Влага,% Сера,% Выход летучих,%
ДР 0 - 300 24,0 18,0 0,6 42,2 5000 - 7100
ДСШ 0 - 13 30,0 19,0 0,5 39,9 5000 - 7000
ДОМСШ 0 - 50 28,5 19,0 1,0 39,9 7220
ДПК 50 - 300 24,9 17,5 0,5 39,0 5100 - 7150
ДОМ 13 - 50 28,0 19,0 0,5 39,0 5100 - 7100

Транспортирование и хранение

Транспортируют уголь навалом в открытых железнодорожных вагонах, соответствуя ГОСТу 22235 или другими транспортными средствами, не нарушая правил перевозки грузов, которые действуют на транспорте данного вида.

При транспортировании угля классов 0-13, 0-25, 0-50 мм производитель обязан принять меры, исключающие образование угольной пыли и потери угля при транспортировании.

Высота падения угля при погрузке и разгрузке не должна превышать двух метров.

Угольный склад должен быть расположен в сухом, незаболоченном и незатапливаемом месте, неподалеку от железнодорожных погрузочных путей или автомобильных дорог.

Специализированные площадки, для складирования угля, предварительно выравнивают и очищают, покрывая их смесью шлака и глины толщиной 12-15 см, тщательно утрамбовывая.

Устраивать площадки для угольных складов над подземными коммуникациями и сооружениями, ЗАПРЕЩЕНО!

Сроки хранения углей:

  • бурого - 6 месяцев;
  • каменного – от 6 до 18 месяцев;
  • антрацита - 24 месяца.

Требования безопасности

Уголь не является токсичным продуктом. В воздухе рабочей зоны уголь присутствует в виде аэрозоля фиброгенного действия.

По степени воздействия на организм человека уголь относится к 4-му классу опасности.